题目:
给定一个数组,将数组中的元素向右移动 k 个位置,其中 k 是非负数。
示例 1:
输入: [1,2,3,4,5,6,7] 和 k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右旋转 1 步: [7,1,2,3,4,5,6]
向右旋转 2 步: [6,7,1,2,3,4,5]
向右旋转 3 步: [5,6,7,1,2,3,4]
示例 2:
输入: [-1,-100,3,99] 和 k = 2
输出: [3,99,-1,-100]
解释:
向右旋转 1 步: [99,-1,-100,3]
向右旋转 2 步: [3,99,-1,-100]
说明:
尽可能想出更多的解决方案,至少有三种不同的方法可以解决这个问题。
要求使用空间复杂度为 O(1) 的 原地 算法。
方法 1:暴力
最简单的方法是旋转 k 次,每次将数组旋转 1 个元素。
Java
public class Solution {
public void rotate(int[] nums, int k) {
int temp, previous;
for (int i = 0; i < k; i++) {
previous = nums[nums.length - 1];
for (int j = 0; j < nums.length; j++) {
temp = nums[j];
nums[j] = previous;
previous = temp;
}
}
}
}
复杂度分析
时间复杂度:O(n∗k) 。每个元素都被移动 1 步(O(n)O(n)) k次(O(k)O(k)) 。
空间复杂度:O(1) 。没有额外空间被使用。
方法 2:使用额外的数组
我们可以用一个额外的数组来将每个元素放到正确的位置上,也就是原本数组里下标为 ii 的我们把它放到 (i+k)\%数组长度(i+k)%数组长度 的位置。然后把新的数组拷贝到原数组中。
Java
public class Solution {
public void rotate(int[] nums, int k) {
int[] a = new int[nums.length];
for (int i = 0; i < nums.length; i++) {
a[(i + k) % nums.length] = nums[i];
}
for (int i = 0; i < nums.length; i++) {
nums[i] = a[i];
}
}
}
复杂度分析
时间复杂度: O(n) 。将数字放到新的数组中需要一遍遍历,另一边来把新数组的元素拷贝回原数组。
空间复杂度: O(n)。另一个数组需要原数组长度的空间。
方法 3:使用环状替换

nums: [1, 2, 3, 4, 5, 6]
k: 2

Java
public class Solution {
public void rotate(int[] nums, int k) {
k = k % nums.length;
int count = 0;
for (int start = 0; count < nums.length; start++) {
int current = start;
int prev = nums[start];
do {
int next = (current + k) % nums.length;
int temp = nums[next];
nums[next] = prev;
prev = temp;
current = next;
count++;
} while (start != current);
}
}
}
复杂度分析
时间复杂度:O(n) 。只遍历了每个元素一次。
空间复杂度:O(1) 。使用了常数个额外空间。
方法 4:使用反转
这个方法基于这个事实:当我们旋转数组 k 次, k%n 个尾部元素会被移动到头部,剩下的元素会被向后移动。
在这个方法中,我们首先将所有元素反转。然后反转前 k 个元素,再反转后面 n−k 个元素,就能得到想要的结果。
假设 n=7且 k=3 。
原始数组 : 1 2 3 4 5 6 7
反转所有数字后 : 7 6 5 4 3 2 1
反转前 k 个数字后 : 5 6 7 4 3 2 1
反转后 n-k 个数字后 : 5 6 7 1 2 3 4 --> 结果
public class Solution {
public void rotate(int[] nums, int k) {
k %= nums.length;
reverse(nums, 0, nums.length - 1);
reverse(nums, 0, k - 1);
reverse(nums, k, nums.length - 1);
}
public void reverse(int[] nums, int start, int end) {
while (start < end) {
int temp = nums[start];
nums[start] = nums[end];
nums[end] = temp;
start++;
end--;
}
}
}
复杂度分析
时间复杂度:O(n) 。 nn 个元素被反转了总共 3 次。
空间复杂度:O(1) 。 没有使用额外的空间。
Comments NOTHING